Initial boundary value problems for second order impulsive functional differential inclusions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Initial value problems for second order hybrid fuzzy differential equations

Usage of fuzzy differential equations (FDEs) is a natural way to model dynamical systems under possibilistic uncertainty. We consider second order hybrid fuzzy differentia

متن کامل

Boundary value problem for second-order impulsive functional differential equations

This paper discusses a kind of linear boundary value problem for a nonlinear second order impulsive functional differential equations. We establish several existence results by using the lower and upper solutions and monotone iterative techniques. An example is discussed to illustrate the efficiency of the obtained result. © 2005 Elsevier Inc. All rights reserved.

متن کامل

Neumann Boundary Value Problems for Impulsive Differential Inclusions

where F : [0, 1]×R → P(R) is a compact valued multivalued map, P(R) is the family of all subsets of R, k ∈ (0, π 2 ), 0 < t1 < t2 < . . . < tm < 1, Ik ∈ C(R,R) (k = 1, 2, . . . , m), ∆x|t=tk = x(t + k )− x(t − k ), x(t + k ) and x(t − k ) represent the right and left limits of x(t) at t = tk respectively, k = 1, 2, . . . , m. In the literature there are few papers dealing with the existence of ...

متن کامل

Existence Results for Second-order Impulsive Functional Differential Inclusions

respectively, where F : [0,T]×D→ (Rn) is amultivaluedmap,D = {ψ : [−r,0]→Rn; ψ is continuous everywhere except for a finite number of points t̃ at which ψ(t̃−) and ψ(t̃+) exist with ψ(t̃−)= ψ(t̃)}, φ ∈D, p : [0,T]→R+ is continuous, η ∈Rn, (Rn) is the family of all nonempty subsets of Rn, 0 < r < ∞, 0 = t0 < t1 < ··· < tm < tm+1 = T , Ik, Jk : Rn → Rnk = 1, . . . ,m are continuous functions. y(t− k )...

متن کامل

Periodic Boundary Value Problems for Second-Order Functional Differential Equations

Upper and lower solution method plays an important role in studying boundary value problems for nonlinear differential equations; see 1 and the references therein. Recently, many authors are devoted to extend its applications to boundary value problems of functional differential equations 2–5 . Suppose α is one upper solution or lower solution of periodic boundary value problems for second-orde...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Journal of Qualitative Theory of Differential Equations

سال: 2003

ISSN: 1417-3875

DOI: 10.14232/ejqtde.2003.1.3